Sulfur Tolerant Magnesium Nickel Silicate Catalyst for Reforming of Biomass Gasification Products to Syngas

نویسندگان

  • Richard Q. Long
  • Scott L. Swartz
چکیده

Magnesium nickel silicate (MNS) has been investigated as a catalyst to convert tars and light hydrocarbons to syngas (CO and H2) by steam reforming and CO2 reforming in the presence of H2S for biomass gasification process at NexTech Materials. It was observed that complete CH4 conversion could be achieved on MNS catalyst granules at 800–900 °C and a space velocity of 24,000 mL/g/h in a simulated biomass gasification stream. Addition of 10–20 ppm H2S to the feed had no apparent impact on CH4 conversion. The MNS-washcoated monolith also showed high activities in converting methane, light hydrocarbons and tar to syngas. A 1200 h test without deactivation was achieved on the MNS washcoated monolith in the presence of H2S and/or NH3, two common impurities in gasified biomass. The results indicate that the MNS material is a promising catalyst for removal of tar and light hydrocarbons from biomass gasified gases, enabling efficient use of biomass to produce power, liquid fuels and valuable chemicals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biomass gasification with NiO/Olivine catalysts in fluidised bed gasifier

Tar removal from biomass gasification gas is a crucial problem in applying syngas from biomass for its downstream applications. Catalytic biomass gasification has given promising results for tar cracking. A few research groups have investigated the use of olivine for tar cracking [2,3,4,7,8,9,10]. The presence of oxides of iron and magnesium in the mineral olivine give it the ability to crack h...

متن کامل

A combined catalyst and sorbent for enhancing hydrogen production from coal or biomass

Future large-scale production of H2 for use as a clean fuel will likely depend upon gasifying coal or biomass followed by steam reforming the resulting gas mixture and separating the CO2 byproduct. The process of steam reforming and CO2 separation can be greatly simplified by utilizing a new material that combines a reforming catalyst with a sorbent for CO2. Such a material was prepared in the ...

متن کامل

Steam Reforming and Gasification of Pyrolysis Oil Reactor and Process Development for Syngas Production from Biomass

Gasification of pyrolysis oil was studied in a fluidized bed over a wide temperature range (523-914 °C) with and without the use of nickel-based catalysts. Noncatalytically, a typical fuel gas was produced. Both a special designed fluid bed catalyst and a crushed commercial fixed bed catalyst showed an initial activity for syngas (H2 and CO) production at T >700 °C. However, these catalysts los...

متن کامل

Study of Ni/Char Catalyst for Biomass Gasification in an Updraft Gasifier: Influence of Catalyst Granular Size on Catalytic Performance

In order to examine whether catalyst granular size was a factor for tar removal and syngas composition enhancement, three Ni/char catalysts with 90-100 mesh (Ni/SC), 50-60 mesh (Ni/MC), and 20-30 mesh (Ni/LC) size were prepared with a mechanical mixing method and tested in an updraft gasifier. Reforming parameters investigated were the reaction temperature (650-850C), the Ni loading (5-20% of ...

متن کامل

Thermal Depolymerization of Biomass with Emphasis on Gasifier Design and Best Method for Catalytic Hot Gas Conditioning

This paper reviews ways that biomass can be converted by thermal depolymerization to make synthetic gas, i.e. syngas. Biomass, being carbon neutral, is considered as a form of solar energy stored during the growing season by photosynthesis. An effective biomass is one with low moisture and ash content, high lignin content, high calorific value, and small particle size. Woody biomass with low as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012